《信号与系统》考试大纲

一、考试的总体要求

考试内容涉及信号与系统的基本理论和分析方法,主要内容包括信号与系统的基本概念,信号的抽样与恢复,信号的调制,连续信号与系统的时域、频域和 S 域分析,离散系统的时域、频域和 Z 域分析,系统的状态空间分析,随机信号通过线性系统分析等。要求考生对相关概念及定理有较深入的了解,熟练掌握各种信号与系统分析方法的基本原理和应用,并具有综合运用所学知识分析问题和解决问题的能力。

二、考试的内容

1、信号与系统的基本概念

- 1) 信号的基本分类方法,以及指数信号、正弦信号、复指数信号、钟形信号的定义和表示方法;
- 2) 信号的移位、反褶、尺度倍乘、微分、积分以及两信号相加或相乘,熟悉在运算过程中表达式对应的波形变化,了解运算的物理背景;
- 3) 信号的直流与交流、奇与偶、脉冲、实部与虚部、正交 函数等分解方法;
- 4) 系统的分类,连续时间系统与离散时间系统、即时系统与动态系统、线性系统与非线性系统、时变系统与时不变系统;
- 5) 线性时不变系统的基本特性,叠加性与均匀性、时不变性,微分特性

- 6) 信号调制的目的、定义和分类;
- 7) 线性调制的一般模型、调制、解调方法、抗噪声性能;
- 8) 调频、调相的基本概念及角度调制的抗噪性能;

2 连续信号与系统的时域分析

- 1) 微分方程式的建立与求解、系统微分方程的经典解法
- 2) 零输入响应和零状态响应、冲击响应与阶跃响应
- 3) 卷积的定义、性质和计算

3 连续信号与系统的频域分析

- 1) 周期信号的傅里叶级数,三角函数形式和指数形式
- 2) 典型周期信号,周期矩形脉冲信号、周期三角脉冲信号、 周期半波余弦信号、周期全波余弦信号频谱的特点
- 3) 傅立叶变换:典型非周期信号,单边指数信号、双边指数信号、矩形脉冲信号、钟形脉冲信号、升余弦脉冲信号的傅立叶变换;熟练掌握冲激函数和阶跃函数的傅立叶变换;傅立叶变换的基本性质,对称性、线性、奇偶虚实性、尺度变换特性、时移特性、频移特性微分特性、积分特性;正弦和余弦信号、一般周期信号的傅立叶变换;
 - 4) 抽样信号的傅立叶变换、抽样定理

4 连续信号与系统的 S 域分析

- 1) 拉普拉斯变换的定义、应用范围、物理意义及收敛
- 2) 常用函数的拉氏变换、拉普拉斯逆变换
- 3) 用拉普拉斯变换法分析电路、 S 域元件模型、二阶谐振

系统的 S 平面分析方法

- 4) 系统零、极点分布与其时域特征的关系、自由响应与强 迫响应, 暂态响应与稳态响应和零、极点的关系、系统零、极点 分布与系统的频率响应的关系
- 5) 系统稳定性的定义与判断、利用 S 域流图分析析连续系统的性能

5 离散信号与系统的时域分析

- 1) 离散时间信号-序列的分类与运算
- 2) 离散时间系统的数学模型及求解
- 3) 深入理解单位样值响应
- 4) 离散卷积和的定义, 性质与计算等

6 离散信号与系统的频域分析

- 1) 离散系统的系统函数
- 2) 离散系统的频率响应
- 3) 序列的傅立叶变换
- 4) 利用系统的状态方程求解系统的输出响应

7 离散信号与系统的 Z 域分析

- 1) Z 变换的定义与收敛域
- 2) 典型序列的 Z 变换、逆 Z 变换
- 3) 掌握 Z 变换的性质
- 4) Z 变换与拉普拉斯变换的关系 5) 差分方程的 Z 变换求

8 系统的状态空间分析

- 1) 状态空间描述
- 2) 连续系统状态空间方程的建立
- 3) 连续系统状态空间方程的解法
- 4) 离散系统的状态空间分析
- 5) 系统函数矩阵与系统稳定性

9 随机信号分析

- 1) 随机过程的基本概念及其数字特征(均值、方差、相关函数等);
- 2) 平稳随机过程的定义及其各态历经性, 平稳随机过程的相关函数与功率谱密度;
- 3) 高斯过程、窄带随机过程、正弦波加窄带高斯随机过程的定义及其统计特性;
 - 4) 白噪声和带限白噪声;
 - 5) 随机过程通过线性系统;

三、考试题型及比例

填空题: 30%左右

分析问答题、计算题: 70%左右

四、考试形式及时间

考试形式为闭卷笔试,试卷总分值为 150 分,考试时间为 三小时。

五、主要参考教材

信号与系统:《信号与系统》(第三版),陈潭生等,西安电子科技大学出版社.